A natural fractal is a natural element that can be described by fractal geometry. Clouds, mountains, circulatory system, the coastlines or snowflakes are natural fractals. This representation is approximate, since the properties ascribed to the ideal fractal objects such as infinite detail, have limits on the natural world.
Characteristics
Frost crystals formed naturally on cold glass illustrate fractal process development in a purely physical system
A fractal often has the following features:
It has a fine structure at arbitrarily small scales.
It is too irregular to be easily described in traditional Euclidean geometric language.
It is self-similar (at least approximately or stochastically).
It has a Hausdorff dimension which is greater than its topological dimension (although this requirement is not met by space-filling curves such as the Hilbert curve).
It has a simple and recursive definition.
Because they appear similar at all levels of magnification, fractals are often considered to be infinitely complex (in informal terms). Natural objects that are approximated by fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, snow flakes, various vegetables (cauliflower and broccoli), and animal coloration patterns. However, not all self-similar objects are fractals—for example, the real line (a straight Euclidean line) is formally self-similar but fails to have other fractal characteristics; for instance, it is regular enough to be described in Euclidean terms.
Images of fractals can be created using fractal-generating software. Images produced by such software are normally referred to as being fractals even if they do not have the above characteristics, such as when it is possible to zoom into a region of the fractal that does not exhibit any fractal properties. Also, these may include calculation or display artifacts which are not characteristics of true fractals.